Algorithmische Verfahren zur Darstellung von Primzahlen

von

Erich Landhäußer*

(I) Einleitung und Zusammenfassung:

Die Menge der ungeraden Zahlen läßt sich in 3 Klassen aufteilen Landhäußer [1], Euler [2], nämlich die Klasse der durch 3 teilbaren Zahlen, ferner in 2 Klassen, die aus den Rekursionsgleichungen (A) resultieren. In der vorliegenden Arbeit wird gezeigt, dass sich mit Hilfe von Erzeugenden Funktionen $f_{(n)}$ aus den Basisgleichungen (A) in jeder der beiden Klassen endliche Primzahlfolgen $P_{(n)}$ bestimmen lassen; die Funktionen sind nicht bijektiv. Es ist fraglich, ob man unendlich viele Erzeugende benötigt, um eine Primzahlklasse darzustellen.

(II) Voraussetzungen

- (1) Prim- und Nichtprimzahlen sind bekannt
- (2) Es gelten die Basisgleichungen (Landhäußer [1])

(A)
$$\begin{cases} n_5 = 5 + 6 \,\sigma; 5,11,17,23,29,35,41, \cdots 5 - Strang \\ n_7 = 7 + 6 \,\sigma; 7,13,19,25,31,37,43, \cdots 7 - Strang \end{cases} \sigma = 0,1,2,\cdots$$

(3) erzeugende Funktionen $f_{(n)}$, $n=0,1,2,\cdots$ produzieren mit einer Startprimzahl p_0 im jeweiligen Strang eine endliche Folge von Primzahlen $P_{(n)}$; deren Abbruch im allgemeinen durch ein Produkt erfolgt; die Entwicklung ist zu Ende, wie bei Euler entstehen Lücken zwischen den Primzahlen.

^{*}Erich Landhäußer, Hünensand 45; 49716 Meppen; E-Mail: alandhae@gmx.de

In (A) sind Prim- und Nichtprimzahlen enthalten; gesucht sind Primzahlen; die funktionale Abhängigkeit ist durch das jeweilige $f_{(n)}$ bestimmt; die Folgen werden unterschiedliche Längen haben.

 $f_{(n)} = 6n^2$; $n = 0, 1, 2, 3, \dots$ und den

2197

2203

1975

1981

1		U			0 (n)					
Startprimza	hlen 7,13	,19,31,37	7,…							
n	0	1	2	3	4	5	6	7	8	9
6n²	0	6	24	54	96	150	216	294	384	486
7+6n²	7	13	31	61	103	157	223	301 —	391 -	493
13+6n²	13	19	37	67	109	163	229	307	397	499
19+6n²	19	25	43	73	115 —	169 —	235 —	313	403 —	505
31+6n²	31	37	55	85	127 —	181 —	247	325	415	517
37+6n²	37	43	61	91	133 —	187	253 —	331	421	523
Arbeitet man abw	ärts im Strang,	dann existiert	ein Vorrat an	f(n)						
17+6n²	17	23	41	71	113	167	233	311	401	503
11+6n²	11	17	35 –	65 –	107 —	161	227	305 —		
5+6n²	5	11	29	59	101	155 —	221			
n	10	11	12	13	14	15	16	17	18	19
6n²	600	726	864	1014	1176	1350	1536	1734	1944	2166
7+6n²	607 —	733 —	871 —	1021 —	1183 —	1357 —	1543 —	1741	1951 —	2173
13+6n²	613	739	877	1027 —	1189 —	1363 —	1549 -	1747	1957 —	2179
19+6n²	619	745 —	883	1033 —	1195 —	1369	1555 —	1753 —	1963 —	2185

1207

1213

1193

1381

1387

1367

1567

1573—

1553

1765—

1771

Bemerkungen:

631

637

617

Arbeitet man abwärts im Strang, dann existiert ein Vorrat an f(n)

757_

763

743

895

901

881

1045

1051-

1031

31+6n²

37+6n²

17+6n²

11+6n² 5+6n²

(1) Es ist $p_{(n)}=7+6\,n^2$; $n=0,1,\cdots 6$, n=7 liefert das Ende der Folge: $7+6\cdot 7^2=7\cdot (1+6\cdot 7)$, die Folge ist maximal ausgeschöpft, was immer der Fall ist; es kommt zum Abbruch. $n\geq 8$ kann Prim oder Nichtprim aus dem 7-Srtrang darstellen und ist daher nicht mehr zuverlässig; trotzdem müssen für das Funktionieren des Algorithmus alle nachfolgenden n, $f_{(n)}$, n_7 aufgeschrieben werden.

(2) Die Folge $17+6n^2$ ist optimal dargestellt.

Beispiele: Aus dem 7-Strang die Primzahlen mit

(3) Vorzeitiger Abbruch; die Differenz Δ zwischen den Primzahlen ist 31-19=12.

(4) Wählt man $p_0^{(7)} - p_0^{(5)} = 2$ dann resultiert für die Spaltenfolge

$$\begin{pmatrix} p_0^{(5)} + 6n^2 \\ p_0^{(5)} + 2 + 6n^2 \end{pmatrix} : \begin{pmatrix} p_0^{(5)} \\ p_0^{(5)} + 2 \end{pmatrix} ; \begin{pmatrix} p_0^{(5)} \\ p_0^{(5)} + 2 \end{pmatrix} ; \begin{pmatrix} p_0^{(5)} + 6 \\ p_0^{(5)} + 8 \end{pmatrix} ; \dots$$

Führt man "ad infinitum" durch unter Mitnahme nicht primer Zahlen, dann treten Spalten

 $(\uparrow, \downarrow, \uparrow, |)$ auf. Beispielsweise für $p_0^{(5)}=5$ die Folge

interessiert man sich nur für Zwillinge, dann bricht die Folge bei $\begin{pmatrix} 101\\103 \end{pmatrix}$ ab.

Mit Hilfe der Möbiusfunktionen [4] und deren Umkehrung lässt sich die Anzahlfunktion nichtprimer Zahlen, die im Intervall (\sqrt{x}, x) liegen berechnen, analog der konstruktiven Prozedur beim "Sieb des Eratosthenes".

Die Produkte der Spalten aus 5- und 7-Strang – es werden nicht alle zusammengesetzten Zahlen wiedergegeben- liegen alle im 5-Strang und man findet:

$$\prod (N_{0}, n) = N_{0} + f_{(n)} = 35 + 6^{2} (n^{2} - 1); n = 1, 2, 3, \dots$$

$$= 35, 143, 323, 575, 899, \dots$$

$$\binom{5}{7}, \binom{11}{13}, \binom{17}{19}, \binom{23}{25}, \binom{29}{31}, \dots$$
 für die nichtabbrechende Produktfolge.
$$\uparrow, \quad \uparrow, \quad \uparrow, \quad \uparrow, \quad \uparrow, \dots$$

Setzt man

x kann nur im 5-Strang auftreten und deshalb keine Mersenne-Zahl darstellen; da

$$(6n)-1=2^p-2\Rightarrow 6n=2^p\Rightarrow n\notin\mathbb{N}_0$$

 $x+2=6n+1=2^p-1$ dagegen läßt das Auftreten von Mersennestrukturen zu, da

$$6n = 2^{p} - 2 = 2 \cdot (2^{p-1} - 1) \Rightarrow n = \frac{2^{p-1} - 1}{3} \in \mathbb{N}$$

Mit dieser Feststellung ist aber keine Entscheidung über " 2^p-1 ist Primzahl "möglich. Mittels der Möbius-Funktion kann man die Anzahl von Primzahlen unterhalb einer Grenze bestimmen, nicht aber ihre eigentlichen Werte, vgl. Bundschuh [4].

Literaturverzeichnis

- [1] Erich Landhäußer, Dreiklassenteilung der Menge der ungeraden Zahlen, 2011 http://www.primzahlen.de/referenten/Erich_Landhaeusser/Dreiklassenteilung_der_Menge_der_ungeraden_Zahlen.pdf
- [2] Leonhard Euler, Nouveaux Mémoires de l'Académie royale des Sciences. Berlin, p. 36, 1772.
- [3] <u>Weisstein, Eric W.</u> "Prime-Generating Polynomial." From <u>MathWorld</u>.-A Wolfram Web Resource. http://mathworld.wolfram.com/Prime-GeneratingPolynomial.html
- [4] Peter Bundschuh, Einführung in die Zahlentheorie, S. 45-46, S. 288, 4. Auflage 1990